group_split()
works like base::split()
but:
It uses the grouping structure from group_by()
and therefore is subject
to the data mask
It does not name the elements of the list based on the grouping as this
only works well for a single character grouping variable. Instead,
use group_keys()
to access a data frame that defines the groups.
group_split()
is primarily designed to work with grouped data frames.
You can pass ...
to group and split an ungrouped data frame, but this
is generally not very useful as you want have easy access to the group
metadata.
# S3 method for class 'SingleCellExperiment'
group_split(.tbl, ..., .keep = TRUE)
A tbl.
If .tbl
is an ungrouped data frame, a grouping specification,
forwarded to group_by()
.
Should the grouping columns be kept?
A list of tibbles. Each tibble contains the rows of .tbl
for the
associated group and all the columns, including the grouping variables.
Note that this returns a list_of which is slightly
stricter than a simple list but is useful for representing lists where
every element has the same type.
group_split()
is not stable because you can achieve very similar results by
manipulating the nested column returned from
tidyr::nest(.by =)
. That also retains the group keys all
within a single data structure. group_split()
may be deprecated in the
future.
Other grouping functions:
group_by()
,
group_map()
,
group_nest()
,
group_trim()
data(pbmc_small)
pbmc_small |> group_split(groups)
#> [[1]]
#> # A SingleCellExperiment-tibble abstraction: 44 × 17
#> # Features=230 | Cells=44 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 CATG… SeuratPro… 85 52 0 A g1
#> 2 TCTG… SeuratPro… 70 48 0 A g1
#> 3 TGGT… SeuratPro… 64 36 0 A g1
#> 4 GCAG… SeuratPro… 72 45 0 A g1
#> 5 GATA… SeuratPro… 52 36 0 A g1
#> 6 AATG… SeuratPro… 100 41 0 A g1
#> 7 AGAG… SeuratPro… 191 61 0 A g1
#> 8 CTAA… SeuratPro… 168 44 0 A g1
#> 9 TTGG… SeuratPro… 135 45 0 A g1
#> 10 CATC… SeuratPro… 79 43 0 A g1
#> # ℹ 34 more rows
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
#>
#> [[2]]
#> # A SingleCellExperiment-tibble abstraction: 36 × 17
#> # Features=230 | Cells=36 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 ATGC… SeuratPro… 70 47 0 A g2
#> 2 GAAC… SeuratPro… 87 50 1 B g2
#> 3 TGAC… SeuratPro… 127 56 0 A g2
#> 4 AGTC… SeuratPro… 173 53 0 A g2
#> 5 AGGT… SeuratPro… 62 31 0 A g2
#> 6 GGGT… SeuratPro… 101 41 0 A g2
#> 7 CATG… SeuratPro… 51 26 0 A g2
#> 8 TACG… SeuratPro… 99 45 0 A g2
#> 9 GTAA… SeuratPro… 67 33 0 A g2
#> 10 TACA… SeuratPro… 109 41 0 A g2
#> # ℹ 26 more rows
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
#>