slice()
lets you index rows by their (integer) locations. It allows you
to select, remove, and duplicate rows. It is accompanied by a number of
helpers for common use cases:
slice_head()
and slice_tail()
select the first or last rows.
slice_sample()
randomly selects rows.
slice_min()
and slice_max()
select rows with the smallest or largest
values of a variable.
If .data
is a grouped_df, the operation will be performed on each group,
so that (e.g.) slice_head(df, n = 5)
will select the first five rows in
each group.
# S3 method for class 'SingleCellExperiment'
slice(.data, ..., .by = NULL, .preserve = FALSE)
# S3 method for class 'SingleCellExperiment'
slice_sample(
.data,
...,
n = NULL,
prop = NULL,
by = NULL,
weight_by = NULL,
replace = FALSE
)
# S3 method for class 'SingleCellExperiment'
slice_head(.data, ..., n, prop, by = NULL)
# S3 method for class 'SingleCellExperiment'
slice_tail(.data, ..., n, prop, by = NULL)
# S3 method for class 'SingleCellExperiment'
slice_min(
.data,
order_by,
...,
n,
prop,
by = NULL,
with_ties = TRUE,
na_rm = FALSE
)
# S3 method for class 'SingleCellExperiment'
slice_max(
.data,
order_by,
...,
n,
prop,
by = NULL,
with_ties = TRUE,
na_rm = FALSE
)
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
For slice()
: <data-masking
>
Integer row values.
Provide either positive values to keep, or negative values to drop. The values provided must be either all positive or all negative. Indices beyond the number of rows in the input are silently ignored.
For slice_*()
, these arguments are passed on to methods.
<tidy-select
> Optionally, a selection of columns to
group by for just this operation, functioning as an alternative to group_by()
. For
details and examples, see ?dplyr_by.
Relevant when the .data
input is grouped.
If .preserve = FALSE
(the default), the grouping structure
is recalculated based on the resulting data, otherwise the grouping is kept as is.
Provide either n
, the number of rows, or prop
, the
proportion of rows to select. If neither are supplied, n = 1
will be
used. If n
is greater than the number of rows in the group
(or prop > 1
), the result will be silently truncated to the group size.
prop
will be rounded towards zero to generate an integer number of
rows.
A negative value of n
or prop
will be subtracted from the group
size. For example, n = -2
with a group of 5 rows will select 5 - 2 = 3
rows; prop = -0.25
with 8 rows will select 8 * (1 - 0.25) = 6 rows.
<data-masking
> Sampling
weights. This must evaluate to a vector of non-negative numbers the same
length as the input. Weights are automatically standardised to sum to 1.
Should sampling be performed with (TRUE
) or without
(FALSE
, the default) replacement.
<data-masking
> Variable or
function of variables to order by. To order by multiple variables, wrap
them in a data frame or tibble.
Should ties be kept together? The default, TRUE
,
may return more rows than you request. Use FALSE
to ignore ties,
and return the first n
rows.
Should missing values in order_by
be removed from the result?
If FALSE
, NA
values are sorted to the end (like in arrange()
), so
they will only be included if there are insufficient non-missing values to
reach n
/prop
.
An object of the same type as .data
. The output has the following
properties:
Each row may appear 0, 1, or many times in the output.
Columns are not modified.
Groups are not modified.
Data frame attributes are preserved.
Slice does not work with relational databases because they have no
intrinsic notion of row order. If you want to perform the equivalent
operation, use filter()
and row_number()
.
These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
slice()
: (ANY
, integer
, numeric
, Rle
, RleList
, XDouble
, XInteger
), dbplyr (tbl_lazy
), dplyr (data.frame
), plotly (plotly
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_head()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_tail()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_min()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_max()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_sample()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
slice()
: (ANY
, integer
, numeric
, Rle
, RleList
, XDouble
, XInteger
), dbplyr (tbl_lazy
), dplyr (data.frame
), plotly (plotly
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_head()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_tail()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_min()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_max()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_sample()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
slice()
: (ANY
, integer
, numeric
, Rle
, RleList
, XDouble
, XInteger
), dbplyr (tbl_lazy
), dplyr (data.frame
), plotly (plotly
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_head()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_tail()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_min()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_max()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_sample()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
slice()
: (ANY
, integer
, numeric
, Rle
, RleList
, XDouble
, XInteger
), dbplyr (tbl_lazy
), dplyr (data.frame
), plotly (plotly
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_head()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_tail()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_min()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_max()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_sample()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
slice()
: (ANY
, integer
, numeric
, Rle
, RleList
, XDouble
, XInteger
), dbplyr (tbl_lazy
), dplyr (data.frame
), plotly (plotly
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_head()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_tail()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_min()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_max()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_sample()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
slice()
: (ANY
, integer
, numeric
, Rle
, RleList
, XDouble
, XInteger
), dbplyr (tbl_lazy
), dplyr (data.frame
), plotly (plotly
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_head()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_tail()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_min()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_max()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
slice_sample()
: dbplyr (tbl_lazy
), dplyr (data.frame
), tidySingleCellExperiment (SingleCellExperiment
)
.
data(pbmc_small)
pbmc_small |> slice(1)
#> # A SingleCellExperiment-tibble abstraction: 1 × 17
#> # Features=230 | Cells=1 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 ATGCC… SeuratPro… 70 47 0 A g2
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
data(pbmc_small)
pbmc_small |> slice_sample(n=1)
#> # A SingleCellExperiment-tibble abstraction: 1 × 17
#> # Features=230 | Cells=1 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 GACAT… SeuratPro… 872 96 1 B g1
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
pbmc_small |> slice_sample(prop=0.1)
#> # A SingleCellExperiment-tibble abstraction: 8 × 17
#> # Features=230 | Cells=8 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 TCTGA… SeuratPro… 70 48 0 A g1
#> 2 ATAGG… SeuratPro… 406 74 1 B g1
#> 3 CATCA… SeuratPro… 79 43 0 A g1
#> 4 CATGG… SeuratPro… 85 52 0 A g1
#> 5 TTTAG… SeuratPro… 462 86 1 B g1
#> 6 CATTA… SeuratPro… 316 65 0 A g2
#> 7 GACAT… SeuratPro… 872 96 1 B g1
#> 8 CCATC… SeuratPro… 224 50 1 B g2
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
data(pbmc_small)
# First rows based on existing order
pbmc_small |> slice_head(n=5)
#> # A SingleCellExperiment-tibble abstraction: 5 × 17
#> # Features=230 | Cells=5 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 ATGCC… SeuratPro… 70 47 0 A g2
#> 2 CATGG… SeuratPro… 85 52 0 A g1
#> 3 GAACC… SeuratPro… 87 50 1 B g2
#> 4 TGACT… SeuratPro… 127 56 0 A g2
#> 5 AGTCA… SeuratPro… 173 53 0 A g2
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
data(pbmc_small)
# First rows based on existing order
pbmc_small |> slice_tail(n=5)
#> # A SingleCellExperiment-tibble abstraction: 5 × 17
#> # Features=230 | Cells=5 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 GAGTT… SeuratPro… 527 47 0 A g1
#> 2 GACGC… SeuratPro… 202 30 0 A g2
#> 3 AGTCT… SeuratPro… 157 29 0 A g1
#> 4 GGAAC… SeuratPro… 150 30 0 A g2
#> 5 CTTGA… SeuratPro… 233 76 1 B g1
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
data(pbmc_small)
# Rows with minimum and maximum values of a metadata variable
pbmc_small |> slice_min(nFeature_RNA, n=5)
#> # A SingleCellExperiment-tibble abstraction: 5 × 17
#> # Features=230 | Cells=5 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 CATGA… SeuratPro… 51 26 0 A g2
#> 2 GGCAT… SeuratPro… 172 29 0 A g1
#> 3 AGTCT… SeuratPro… 157 29 0 A g1
#> 4 GACGC… SeuratPro… 202 30 0 A g2
#> 5 GGAAC… SeuratPro… 150 30 0 A g2
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
# slice_min() and slice_max() may return more rows than requested
# in the presence of ties.
pbmc_small |> slice_min(nFeature_RNA, n=2)
#> # A SingleCellExperiment-tibble abstraction: 3 × 17
#> # Features=230 | Cells=3 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 CATGA… SeuratPro… 51 26 0 A g2
#> 2 GGCAT… SeuratPro… 172 29 0 A g1
#> 3 AGTCT… SeuratPro… 157 29 0 A g1
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
# Use with_ties=FALSE to return exactly n matches
pbmc_small |> slice_min(nFeature_RNA, n=2, with_ties=FALSE)
#> # A SingleCellExperiment-tibble abstraction: 2 × 17
#> # Features=230 | Cells=2 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 CATGA… SeuratPro… 51 26 0 A g2
#> 2 GGCAT… SeuratPro… 172 29 0 A g1
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
# Or use additional variables to break the tie:
pbmc_small |> slice_min(tibble::tibble(nFeature_RNA, nCount_RNA), n=2)
#> # A SingleCellExperiment-tibble abstraction: 2 × 17
#> # Features=230 | Cells=2 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 CATGA… SeuratPro… 51 26 0 A g2
#> 2 AGTCT… SeuratPro… 157 29 0 A g1
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
# Use by for group-wise operations
pbmc_small |> slice_min(nFeature_RNA, n=5, by=groups)
#> # A SingleCellExperiment-tibble abstraction: 10 × 17
#> # Features=230 | Cells=10 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 CATG… SeuratPro… 51 26 0 A g2
#> 2 GACG… SeuratPro… 202 30 0 A g2
#> 3 GGAA… SeuratPro… 150 30 0 A g2
#> 4 AGGT… SeuratPro… 62 31 0 A g2
#> 5 CTTC… SeuratPro… 41 32 0 A g2
#> 6 GGCA… SeuratPro… 172 29 0 A g1
#> 7 AGTC… SeuratPro… 157 29 0 A g1
#> 8 TGGT… SeuratPro… 64 36 0 A g1
#> 9 GATA… SeuratPro… 52 36 0 A g1
#> 10 TTAC… SeuratPro… 228 39 0 A g1
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>
data(pbmc_small)
# Rows with minimum and maximum values of a metadata variable
pbmc_small |> slice_max(nFeature_RNA, n=5)
#> # A SingleCellExperiment-tibble abstraction: 5 × 17
#> # Features=230 | Cells=5 | Assays=counts, logcounts
#> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
#> <chr> <fct> <dbl> <int> <fct> <fct> <chr>
#> 1 GACAT… SeuratPro… 872 96 1 B g1
#> 2 ACGTG… SeuratPro… 709 94 1 B g2
#> 3 TTGAG… SeuratPro… 787 88 0 A g1
#> 4 TTTAG… SeuratPro… 462 86 1 B g1
#> 5 ATTGT… SeuratPro… 745 84 1 B g2
#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
#> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
#> # tSNE_2 <dbl>