# load libraries
library(airway)
library(tibble)
library(dplyr)
library(tidyr)
library(readr)
library(stringr)
library(purrr)
library(ggplot2)
library(ggrepel)
library(tidyHeatmap)
library(tidybulk)
Plot settings. Set the colours and theme we will use for our plots.
# Use colourblind-friendly colours
friendly_cols <- dittoSeq::dittoColors()
# Set theme
custom_theme <-
list(
scale_fill_manual(values = friendly_cols),
scale_color_manual(values = friendly_cols),
theme_bw() +
theme(
panel.border = element_blank(),
axis.line = element_line(),
panel.grid.major = element_line(size = 0.2),
panel.grid.minor = element_line(size = 0.1),
text = element_text(size = 12),
legend.position = "bottom",
# aspect.ratio = 1,
strip.background = element_blank(),
axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
)
)
# create some example tables to use
data(airway)
# counts table
counts <- assay(airway) %>%
as_tibble(rownames = "geneID")
# sample information table
sampleinfo <- colData(airway) %>%
as_tibble(rownames = "sample")
# data preprocessing
counts_tt <-
# convert to tidy format
pivot_longer(counts, cols = starts_with("SRR"), names_to = "sample", values_to = "counts") %>%
# get gene symbols
ensembl_to_symbol(geneID) %>%
# order the columns for tidybulk
select(sample, geneID, counts, transcript) %>%
# add the sample info
left_join(sampleinfo) %>%
# shorten sample name
mutate(sample = str_remove(sample, "SRR1039")) %>%
# convert to tidybulk tibble
tidybulk(.sample = sample, .transcript = geneID, .abundance = counts)
## Joining, by = "sample"
## # A tibble: 8 x 2
## sample total_reads
## <chr> <int>
## 1 508 20637971
## 2 509 18809481
## 3 512 25348649
## 4 513 15163415
## 5 516 24448408
## 6 517 30818215
## 7 520 19126151
## 8 521 21164133
We can also check how many counts we have for each sample by making a bar plot. This helps us see whether there are any major discrepancies between the samples more easily.
As we are using ggplot2, we can also easily view by any other variable that’s a column in our dataset, such as cell line, simply by changing fill
.
We can colour by dex treatment.
We can colour by cell line.
# filter counts
counts_filtered <- counts_tt %>% keep_abundant(factor_of_interest = dex)
# scale counts
counts_scaled <- counts_filtered %>% scale_abundance()
# create box plots
counts_scaled %>%
pivot_longer(cols = c("counts", "counts_scaled"), names_to = "source", values_to = "abundance") %>%
ggplot(aes(x = sample, y = abundance + 1, fill = dex)) +
geom_boxplot() +
geom_hline(aes(yintercept = median(abundance + 1)), colour = "red") +
facet_wrap(~source) +
scale_y_log10() +
theme_bw()
airway %>%
tidybulk() %>%
keep_abundant(factor_of_interest = dex) %>%
scale_abundance() %>%
reduce_dimensions(method = "MDS", scale = FALSE) %>%
pivot_sample() %>%
ggplot(aes(Dim1, Dim2, color = dex)) +
geom_point()
## tidybulk says: to access the raw results do `attr(..., "internals")$MDS`
MA plots enable us to visualise amount of expression (logCPM) versus logFC. Highly expressed genes are towards the right of the plot. We can also colour significant genes (e.g. genes with FDR < 0.05)
# perform differential testing
counts_de <-
counts_tt %>%
test_differential_abundance(
.formula = ~ 0 + dex + cell,
.contrasts = c("dextrt - dexuntrt"),
omit_contrast_in_colnames = TRUE
)
## =====================================
## tidybulk says: All testing methods use raw counts, irrespective of if scale_abundance
## or adjust_abundance have been calculated. Therefore, it is essential to add covariates
## such as batch effects (if applicable) in the formula.
## =====================================
## Warning in eval(dots[[i]][[action]], env, env): tidybulk says: highly abundant
## transcripts were not identified (i.e. identify_abundant()) or filtered (i.e.,
## keep_abundant), therefore this operation will be performed on unfiltered
## data. In rare occasions this could be wanted. In standard whole-transcriptome
## workflows is generally unwanted.
## tidybulk says: The design column names are "dextrt, dexuntrt, cellN061011, cellN080611, cellN61311"
## tidybulk says: to access the raw results (fitted GLM) do `attr(..., "internals")$edgeR`
# maplot, minimal
counts_de %>%
pivot_transcript() %>%
ggplot(aes(x = logCPM, y = -logFC, colour = FDR < 0.05)) +
geom_point() +
theme_bw()
A more informative MA plot, integrating some of the packages in tidyverse.
counts_de %>%
pivot_transcript() %>%
# Subset data
mutate(significant = FDR < 0.05 & abs(logFC) >= 2) %>%
mutate(transcript = ifelse(abs(logFC) >= 5, as.character(transcript), "")) %>%
# Plot
ggplot(aes(x = logCPM, y = logFC, label = transcript)) +
geom_point(aes(color = significant, size = significant, alpha = significant)) +
geom_text_repel() +
scale_color_manual(values = c("black", "#e11f28")) +
scale_size_discrete(range = c(0, 2)) +
theme_bw()
To run below you’ll need the clusterProfiler
and org.Hs.eg.db
packages. This is just one suggestion, adapted from here. If you have other suggestions for how to do a ‘tidy’ pathway analysis feel free to let us know.
library(clusterProfiler)
library(org.Hs.eg.db)
# extract all genes tested for DE
res <- counts_de %>%
pivot_transcript()
# GO terms
egoCC <- res %>%
filter(FDR < 0.1 & logFC > 0) %>%
pull("transcript") %>%
enrichGO(
OrgDb = org.Hs.eg.db,
keyType = "SYMBOL",
ont = "BP",
universe = (res %>% pull("transcript"))
)
dotplot(egoCC)
goplot(egoCC)
emapplot(egoCC)
# MSigDB Hallmark
gmtH <- read.gmt("https://data.broadinstitute.org/gsea-msigdb/msigdb/release/6.2/h.all.v6.2.symbols.gmt")
enrH <- enricher(
gene = (res %>% filter(FDR < 0.1 & logFC > 0) %>%
pull("transcript")),
TERM2GENE = gmtH,
universe = (res %>% pull("transcript"))
)
dotplot(enrH)
emapplot(enrH)
tidybulk
allows for data nesting, using the tidyr
utility nest
. This is an extremely powerful tool as it enables easily performing analyses on data subsets.
Let’s suppose we want to perform differential transcript abundance analysis independently for two different data subsets to compare results after the test
pasilla_de <-
ABACBS2020tidytranscriptomics::pasilla %>%
# Convert SummarizedExperiment object to tibble
tidybulk() %>%
# Filter counts
identify_abundant(factor_of_interest = condition) %>%
# Scale abundance
scale_abundance() %>%
# Nest
nest(data = -type) %>%
# Differential analysis
mutate(data = map(
data,
~ test_differential_abundance(.x, ~condition)
)) %>%
unnest(data)
## =====================================
## tidybulk says: All testing methods use raw counts, irrespective of if scale_abundance
## or adjust_abundance have been calculated. Therefore, it is essential to add covariates
## such as batch effects (if applicable) in the formula.
## =====================================
## tidybulk says: The design column names are "(Intercept), conditionuntreated"
## tidybulk says: to access the raw results (fitted GLM) do `attr(..., "internals")$edgeR`
## =====================================
## tidybulk says: All testing methods use raw counts, irrespective of if scale_abundance
## or adjust_abundance have been calculated. Therefore, it is essential to add covariates
## such as batch effects (if applicable) in the formula.
## =====================================
## tidybulk says: The design column names are "(Intercept), conditionuntreated"
## tidybulk says: to access the raw results (fitted GLM) do `attr(..., "internals")$edgeR`
Now we can for example compare the number of differentially transcribed genes and their co-expression
pasilla_de %>%
nest(data = -type) %>%
mutate(
number_of_differential = map_int(
data, ~ .x %>%
pivot_transcript() %>%
filter(FDR < 0.05) %>%
nrow()
)
)
## # A tibble: 2 x 3
## type data number_of_differential
## <fct> <list> <int>
## 1 single_end <tibble [43,797 × 13]> 40
## 2 paired_end <tibble [58,396 × 13]> 1270
We can easily see which genes overlap, and plot them
pasilla_de %>%
filter(FDR < 0.05) %>%
nest(data = -feature) %>%
mutate(occurrences = map_int(data, ~ .x %>%
distinct(type) %>%
nrow())) %>%
# We filter some of them
filter(occurrences == 2) %>%
dplyr::slice(1:6) %>%
unnest(data) %>%
# And plot
ggplot(aes(type, counts_scaled + 1, color = condition)) +
geom_point() +
facet_wrap(~feature) +
scale_y_log10() +
custom_theme
Let’s suppose we want to identify the markers that distinguish epithelial from endothelial cells, and we also want to then visualise the abundance of those transcripts across many cell types to understand their cell type specificity.
cell_type_tt <- ABACBS2020tidytranscriptomics::cell_type_df %>% tidybulk(sample, symbol, count)
markers_df <-
cell_type_tt %>%
# Filter counts
identify_abundant(factor_of_interest = cell_type) %>%
# Scale abundance
scale_abundance() %>%
# Nest
nest(data = everything()) %>%
# Investigate one cell type pair
mutate(comparison_data = map(
data,
~ .x %>%
filter(cell_type %in% c("endothelial", "epithelial")) %>%
mutate(cell_type = as.character(cell_type))
)) %>%
# test. We run on the two populations but we select data for all populations
mutate(markers = map(
comparison_data,
~ .x %>%
# Differential transcription
test_differential_abundance(
~ 0 + cell_type,
.contrasts = c("cell_typeendothelial - cell_typeepithelial"),
action = "only",
omit_contrast_in_colnames = TRUE
) %>%
# Select markers
filter(logFC > 2) %>%
dplyr::slice(1:10) %>%
pull(symbol)
)) %>%
# Add marker info to original data
mutate(data = map2(data, markers, ~ .x %>% filter(symbol %in% .y))) %>%
select(data) %>%
unnest(data)
Now we can see the abundance of the markers in all our cell types.
markers_df %>%
ggplot(aes(cell_type, count_scaled + 1)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(size = 0.3) +
facet_wrap(~symbol, ncol = 5) +
coord_flip() +
scale_y_log10() +
custom_theme