`arrange()` order the rows of a data frame rows by the values of selected columns.

Unlike other dplyr verbs, `arrange()` largely ignores grouping; you need to explicit mention grouping variables (or use `by_group = TRUE`) in order to group by them, and functions of variables are evaluated once per data frame, not once per group.

Arguments

.data

A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See *Methods*, below, for more details.

...

<[`tidy-eval`][dplyr_tidy_eval]> Variables, or functions or variables. Use [desc()] to sort a variable in descending order.

.by_group

If TRUE, will sort first by grouping variable. Applies to grouped data frames only.

Value

An object of the same type as `.data`.

* All rows appear in the output, but (usually) in a different place. * Columns are not modified. * Groups are not modified. * Data frame attributes are preserved.

A tibble

Details

## Locales The sort order for character vectors will depend on the collating sequence of the locale in use: see [locales()].

## Missing values Unlike base sorting with `sort()`, `NA` are: * always sorted to the end for local data, even when wrapped with `desc()`. * treated differently for remote data, depending on the backend.

Methods

This function is a **generic**, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages:

See also

Other single table verbs: filter(), mutate(), rename(), summarise()

Examples


arrange(mtcars, cyl, disp)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4