Brings transcriptomics to the tidyverse!

The code is released under the version 3 of the GNU General Public License.

website: stemangiola.github.io/tidybulk/ Third party tutorials Please have a look also to

Functions/utilities available

Function Description
aggregate_duplicates Aggregate abundance and annotation of duplicated transcripts in a robust way
identify_abundant keep_abundant identify or keep the abundant genes
keep_variable Filter for top variable features
scale_abundance Scale (normalise) abundance for RNA sequencing depth
reduce_dimensions Perform dimensionality reduction (PCA, MDS, tSNE, UMAP)
cluster_elements Labels elements with cluster identity (kmeans, SNN)
remove_redundancy Filter out elements with highly correlated features
adjust_abundance Remove known unwanted variation (Combat)
test_differential_abundance Differential transcript abundance testing (DESeq2, edgeR, voom)
deconvolve_cellularity Estimated tissue composition (Cibersort, llsr, epic, xCell, mcp_counter, quantiseq
test_differential_cellularity Differential cell-type abundance testing
test_stratification_cellularity Estimate Kaplan-Meier survival differences
test_gene_enrichment Gene enrichment analyses (EGSEA)
test_gene_overrepresentation Gene enrichment on list of transcript names (no rank)
test_gene_rank Gene enrichment on list of transcript (GSEA)
impute_missing_abundance Impute abundance for missing data points using sample groupings
Utilities Description
get_bibliography Get the bibliography of your workflow
tidybulk add tidybulk attributes to a tibble object
tidybulk_SAM_BAM Convert SAM BAM files into tidybulk tibble
pivot_sample Select sample-wise columns/information
pivot_transcript Select transcript-wise columns/information
rotate_dimensions Rotate two dimensions of a degree
ensembl_to_symbol Add gene symbol from ensembl IDs
symbol_to_entrez Add entrez ID from gene symbol
describe_transcript Add gene description from gene symbol

All functions are directly compatibble with SummarizedExperiment object.

Installation

From Bioconductor

BiocManager::install("tidybulk")

From Github

devtools::install_github("stemangiola/tidybulk")

Data

We will use a SummarizedExperiment object

counts_SE
## [90m# A SummarizedExperiment-tibble abstraction: 408,624 × 8[39m
## [90m# [90mFeatures=8513 | Samples=48 | Assays=count[0m[39m
##    .feature .sample    count Cell.type time  condition batch factor_of_interest
##    [3m[90m<chr>[39m[23m    [3m[90m<chr>[39m[23m      [3m[90m<dbl>[39m[23m [3m[90m<fct>[39m[23m     [3m[90m<fct>[39m[23m [3m[90m<lgl>[39m[23m     [3m[90m<fct>[39m[23m [3m[90m<lgl>[39m[23m             
## [90m 1[39m A1BG     SRR1740034   153 b_cell    0 d   TRUE      0     TRUE              
## [90m 2[39m A1BG-AS1 SRR1740034    83 b_cell    0 d   TRUE      0     TRUE              
## [90m 3[39m AAAS     SRR1740034   868 b_cell    0 d   TRUE      0     TRUE              
## [90m 4[39m AACS     SRR1740034   222 b_cell    0 d   TRUE      0     TRUE              
## [90m 5[39m AAGAB    SRR1740034   590 b_cell    0 d   TRUE      0     TRUE              
## [90m 6[39m AAMDC    SRR1740034    48 b_cell    0 d   TRUE      0     TRUE              
## [90m 7[39m AAMP     SRR1740034  [4m1[24m257 b_cell    0 d   TRUE      0     TRUE              
## [90m 8[39m AANAT    SRR1740034   284 b_cell    0 d   TRUE      0     TRUE              
## [90m 9[39m AAR2     SRR1740034   379 b_cell    0 d   TRUE      0     TRUE              
## [90m10[39m AARS2    SRR1740034   685 b_cell    0 d   TRUE      0     TRUE              
## [90m# ℹ 40 more rows[39m

Loading tidySummarizedExperiment will automatically abstract this object as tibble, so we can display it and manipulate it with tidy tools. Although it looks different, and more tools (tidyverse) are available to us, this object is in fact a SummarizedExperiment object.

class(counts_SE)
## [1] "SummarizedExperiment"
## attr(,"package")
## [1] "SummarizedExperiment"

Get the bibliography of your workflow

First of all, you can cite all articles utilised within your workflow automatically from any tidybulk tibble

counts_SE |>    get_bibliography()

Aggregate duplicated transcripts

tidybulk provide the aggregate_duplicates function to aggregate duplicated transcripts (e.g., isoforms, ensembl). For example, we often have to convert ensembl symbols to gene/transcript symbol, but in doing so we have to deal with duplicates. aggregate_duplicates takes a tibble and column names (as symbols; for sample, transcript and count) as arguments and returns a tibble with transcripts with the same name aggregated. All the rest of the columns are appended, and factors and boolean are appended as characters.

TidyTranscriptomics

rowData(counts_SE)$gene_name = rownames(counts_SE)
counts_SE.aggr = counts_SE |> aggregate_duplicates(.transcript = gene_name)

Standard procedure (comparative purpose)

temp = data.frame(
    symbol = dge_list$genes$symbol,
    dge_list$counts
)
dge_list.nr <- by(temp, temp$symbol,
    function(df)
        if(length(df[1,1])>0)
            matrixStats:::colSums(as.matrix(df[,-1]))
)
dge_list.nr <- do.call("rbind", dge_list.nr)
colnames(dge_list.nr) <- colnames(dge_list)

Scale counts

We may want to compensate for sequencing depth, scaling the transcript abundance (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25). scale_abundance takes a tibble, column names (as symbols; for sample, transcript and count) and a method as arguments and returns a tibble with additional columns with scaled data as <NAME OF COUNT COLUMN>_scaled.

TidyTranscriptomics

counts_SE.norm = counts_SE.aggr |> identify_abundant(factor_of_interest = condition) |> scale_abundance()
## tidybulk says: the sample with largest library size SRR1740080 was chosen as reference for scaling

Standard procedure (comparative purpose)

library(edgeR)

dgList <- DGEList(count_m=x,group=group)
keep <- filterByExpr(dgList)
dgList <- dgList[keep,,keep.lib.sizes=FALSE]
[...]
dgList <- calcNormFactors(dgList, method="TMM")
norm_counts.table <- cpm(dgList)

We can easily plot the scaled density to check the scaling outcome. On the x axis we have the log scaled counts, on the y axes we have the density, data is grouped by sample and coloured by cell type.

counts_SE.norm |>
    ggplot(aes(count_scaled + 1, group=.sample, color=`Cell.type`)) +
    geom_density() +
    scale_x_log10() +
    my_theme

Filter variable transcripts

We may want to identify and filter variable transcripts.

TidyTranscriptomics

counts_SE.norm.variable = counts_SE.norm |> keep_variable()
## Getting the 500 most variable genes

Standard procedure (comparative purpose)

library(edgeR)

x = norm_counts.table

s <- rowMeans((x-rowMeans(x))^2)
o <- order(s,decreasing=TRUE)
x <- x[o[1L:top],,drop=FALSE]

norm_counts.table = norm_counts.table[rownames(x)]

norm_counts.table$cell_type = tibble_counts[
    match(
        tibble_counts$sample,
        rownames(norm_counts.table)
    ),
    "Cell.type"
]

Reduce dimensions

We may want to reduce the dimensions of our data, for example using PCA or MDS algorithms. reduce_dimensions takes a tibble, column names (as symbols; for sample, transcript and count) and a method (e.g., MDS or PCA) as arguments and returns a tibble with additional columns for the reduced dimensions.

MDS (Robinson et al., 10.1093/bioinformatics/btp616)

TidyTranscriptomics

counts_SE.norm.MDS =
  counts_SE.norm |>
  reduce_dimensions(method="MDS", .dims = 6)
## Getting the 500 most variable genes

## tidybulk says: to access the raw results do `attr(..., "internals")$MDS`

Standard procedure (comparative purpose)

library(limma)

count_m_log = log(count_m + 1)
cmds = limma::plotMDS(ndim = .dims, plot = FALSE)

cmds = cmds %$% 
    cmdscale.out |>
    setNames(sprintf("Dim%s", 1:6))

cmds$cell_type = tibble_counts[
    match(tibble_counts$sample, rownames(cmds)),
    "Cell.type"
]

On the x and y axes axis we have the reduced dimensions 1 to 3, data is coloured by cell type.

counts_SE.norm.MDS |> pivot_sample()  |> select(contains("Dim"), everything())
## [90m# A tibble: 48 × 14[39m
##      Dim1   Dim2   Dim3     Dim4    Dim5    Dim6 .sample    Cell.type      time 
##     [3m[90m<dbl>[39m[23m  [3m[90m<dbl>[39m[23m  [3m[90m<dbl>[39m[23m    [3m[90m<dbl>[39m[23m   [3m[90m<dbl>[39m[23m   [3m[90m<dbl>[39m[23m [3m[90m<chr>[39m[23m      [3m[90m<fct>[39m[23m          [3m[90m<fct>[39m[23m
## [90m 1[39m -[31m1[39m[31m.[39m[31m46[39m   0.220 -[31m1[39m[31m.[39m[31m68[39m   0.055[4m3[24m   0.065[4m8[24m -[31m0[39m[31m.[39m[31m126[39m  SRR1740034 b_cell         0 d  
## [90m 2[39m -[31m1[39m[31m.[39m[31m46[39m   0.226 -[31m1[39m[31m.[39m[31m71[39m   0.030[4m0[24m   0.045[4m4[24m -[31m0[39m[31m.[39m[31m137[39m  SRR1740035 b_cell         1 d  
## [90m 3[39m -[31m1[39m[31m.[39m[31m44[39m   0.193 -[31m1[39m[31m.[39m[31m60[39m   0.089[4m0[24m   0.050[4m3[24m -[31m0[39m[31m.[39m[31m121[39m  SRR1740036 b_cell         3 d  
## [90m 4[39m -[31m1[39m[31m.[39m[31m44[39m   0.198 -[31m1[39m[31m.[39m[31m67[39m   0.089[4m1[24m   0.054[4m3[24m -[31m0[39m[31m.[39m[31m110[39m  SRR1740037 b_cell         7 d  
## [90m 5[39m  0.243 -[31m1[39m[31m.[39m[31m42[39m   0.182  0.006[4m4[24m[4m2[24m -[31m0[39m[31m.[39m[31m503[39m  -[31m0[39m[31m.[39m[31m131[39m  SRR1740038 dendritic_mye… 0 d  
## [90m 6[39m  0.191 -[31m1[39m[31m.[39m[31m42[39m   0.195  0.018[4m0[24m  -[31m0[39m[31m.[39m[31m457[39m  -[31m0[39m[31m.[39m[31m130[39m  SRR1740039 dendritic_mye… 1 d  
## [90m 7[39m  0.257 -[31m1[39m[31m.[39m[31m42[39m   0.152  0.013[4m0[24m  -[31m0[39m[31m.[39m[31m582[39m  -[31m0[39m[31m.[39m[31m0[39m[31m92[4m7[24m[39m SRR1740040 dendritic_mye… 3 d  
## [90m 8[39m  0.162 -[31m1[39m[31m.[39m[31m43[39m   0.189  0.023[4m2[24m  -[31m0[39m[31m.[39m[31m452[39m  -[31m0[39m[31m.[39m[31m109[39m  SRR1740041 dendritic_mye… 7 d  
## [90m 9[39m  0.516 -[31m1[39m[31m.[39m[31m47[39m   0.240 -[31m0[39m[31m.[39m[31m251[39m    0.457  -[31m0[39m[31m.[39m[31m119[39m  SRR1740042 monocyte       0 d  
## [90m10[39m  0.514 -[31m1[39m[31m.[39m[31m41[39m   0.231 -[31m0[39m[31m.[39m[31m219[39m    0.458  -[31m0[39m[31m.[39m[31m131[39m  SRR1740043 monocyte       1 d  
## [90m# ℹ 38 more rows[39m
## [90m# ℹ 5 more variables: condition <lgl>, batch <fct>, factor_of_interest <lgl>,[39m
## [90m#   TMM <dbl>, multiplier <dbl>[39m
counts_SE.norm.MDS |>
    pivot_sample() |>
  GGally::ggpairs(columns = 6:(6+5), ggplot2::aes(colour=`Cell.type`))
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2

## [1m[22m`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## [1m[22m`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## [1m[22m`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## [1m[22m`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## [1m[22m`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

PCA

TidyTranscriptomics

counts_SE.norm.PCA =
  counts_SE.norm |>
  reduce_dimensions(method="PCA", .dims = 6)

Standard procedure (comparative purpose)

count_m_log = log(count_m + 1)
pc = count_m_log |> prcomp(scale = TRUE)
variance = pc$sdev^2
variance = (variance / sum(variance))[1:6]
pc$cell_type = counts[
    match(counts$sample, rownames(pc)),
    "Cell.type"
]

On the x and y axes axis we have the reduced dimensions 1 to 3, data is coloured by cell type.

counts_SE.norm.PCA |> pivot_sample() |> select(contains("PC"), everything())
## [90m# A tibble: 48 × 14[39m
##        PC1   PC2    PC3     PC4    PC5   PC6 .sample   Cell.type time  condition
##      [3m[90m<dbl>[39m[23m [3m[90m<dbl>[39m[23m  [3m[90m<dbl>[39m[23m   [3m[90m<dbl>[39m[23m  [3m[90m<dbl>[39m[23m [3m[90m<dbl>[39m[23m [3m[90m<chr>[39m[23m     [3m[90m<fct>[39m[23m     [3m[90m<fct>[39m[23m [3m[90m<lgl>[39m[23m    
## [90m 1[39m -[31m12[39m[31m.[39m[31m6[39m   -[31m2[39m[31m.[39m[31m52[39m -[31m14[39m[31m.[39m[31m9[39m  -[31m0[39m[31m.[39m[31m424[39m  -[31m0[39m[31m.[39m[31m592[39m -[31m1[39m[31m.[39m[31m22[39m SRR17400… b_cell    0 d   TRUE     
## [90m 2[39m -[31m12[39m[31m.[39m[31m6[39m   -[31m2[39m[31m.[39m[31m57[39m -[31m15[39m[31m.[39m[31m2[39m  -[31m0[39m[31m.[39m[31m140[39m  -[31m0[39m[31m.[39m[31m388[39m -[31m1[39m[31m.[39m[31m30[39m SRR17400… b_cell    1 d   TRUE     
## [90m 3[39m -[31m12[39m[31m.[39m[31m6[39m   -[31m2[39m[31m.[39m[31m41[39m -[31m14[39m[31m.[39m[31m5[39m  -[31m0[39m[31m.[39m[31m714[39m  -[31m0[39m[31m.[39m[31m344[39m -[31m1[39m[31m.[39m[31m10[39m SRR17400… b_cell    3 d   TRUE     
## [90m 4[39m -[31m12[39m[31m.[39m[31m5[39m   -[31m2[39m[31m.[39m[31m34[39m -[31m14[39m[31m.[39m[31m9[39m  -[31m0[39m[31m.[39m[31m816[39m  -[31m0[39m[31m.[39m[31m427[39m -[31m1[39m[31m.[39m[31m00[39m SRR17400… b_cell    7 d   TRUE     
## [90m 5[39m   0.189 13.0    1.66 -[31m0[39m[31m.[39m[31m0[39m[31m26[4m9[24m[39m  4.64  -[31m1[39m[31m.[39m[31m35[39m SRR17400… dendriti… 0 d   FALSE    
## [90m 6[39m  -[31m0[39m[31m.[39m[31m293[39m 12.9    1.76 -[31m0[39m[31m.[39m[31m0[39m[31m72[4m7[24m[39m  4.21  -[31m1[39m[31m.[39m[31m28[39m SRR17400… dendriti… 1 d   FALSE    
## [90m 7[39m   0.407 13.0    1.42 -[31m0[39m[31m.[39m[31m0[39m[31m52[4m9[24m[39m  5.37  -[31m1[39m[31m.[39m[31m0[39m[31m1[39m SRR17400… dendriti… 3 d   FALSE    
## [90m 8[39m  -[31m0[39m[31m.[39m[31m620[39m 13.0    1.73 -[31m0[39m[31m.[39m[31m201[39m   4.17  -[31m1[39m[31m.[39m[31m0[39m[31m7[39m SRR17400… dendriti… 7 d   FALSE    
## [90m 9[39m   2.56  13.5    2.32  2.03   -[31m4[39m[31m.[39m[31m32[39m  -[31m1[39m[31m.[39m[31m22[39m SRR17400… monocyte  0 d   FALSE    
## [90m10[39m   2.65  13.1    2.21  1.80   -[31m4[39m[31m.[39m[31m29[39m  -[31m1[39m[31m.[39m[31m30[39m SRR17400… monocyte  1 d   FALSE    
## [90m# ℹ 38 more rows[39m
## [90m# ℹ 4 more variables: batch <fct>, factor_of_interest <lgl>, TMM <dbl>,[39m
## [90m#   multiplier <dbl>[39m
counts_SE.norm.PCA |>
     pivot_sample() |>
  GGally::ggpairs(columns = 11:13, ggplot2::aes(colour=`Cell.type`))

tSNE

TidyTranscriptomics

counts_SE.norm.tSNE =
    breast_tcga_mini_SE |>
    identify_abundant() |>
    reduce_dimensions(
        method = "tSNE",
        perplexity=10,
        pca_scale =TRUE
    )

Standard procedure (comparative purpose)

count_m_log = log(count_m + 1)

tsne = Rtsne::Rtsne(
    t(count_m_log),
    perplexity=10,
        pca_scale =TRUE
)$Y
tsne$cell_type = tibble_counts[
    match(tibble_counts$sample, rownames(tsne)),
    "Cell.type"
]

Plot

counts_SE.norm.tSNE |>
    pivot_sample() |>
    select(contains("tSNE"), everything()) 
## [90m# A tibble: 251 × 4[39m
##     tSNE1  tSNE2 .sample                      Call 
##     [3m[90m<dbl>[39m[23m  [3m[90m<dbl>[39m[23m [3m[90m<chr>[39m[23m                        [3m[90m<fct>[39m[23m
## [90m 1[39m   4.25   8.51 TCGA-A1-A0SD-01A-11R-A115-07 LumA 
## [90m 2[39m  -[31m5[39m[31m.[39m[31m57[39m  -[31m2[39m[31m.[39m[31m96[39m TCGA-A1-A0SF-01A-11R-A144-07 LumA 
## [90m 3[39m   8.64  -[31m3[39m[31m.[39m[31m15[39m TCGA-A1-A0SG-01A-11R-A144-07 LumA 
## [90m 4[39m   4.91  -[31m4[39m[31m.[39m[31m31[39m TCGA-A1-A0SH-01A-11R-A084-07 LumA 
## [90m 5[39m   4.74   5.76 TCGA-A1-A0SI-01A-11R-A144-07 LumB 
## [90m 6[39m  -[31m4[39m[31m.[39m[31m0[39m[31m5[39m   7.13 TCGA-A1-A0SJ-01A-11R-A084-07 LumA 
## [90m 7[39m -[31m32[39m[31m.[39m[31m2[39m   -[31m5[39m[31m.[39m[31m23[39m TCGA-A1-A0SK-01A-12R-A084-07 Basal
## [90m 8[39m   4.22 -[31m13[39m[31m.[39m[31m2[39m  TCGA-A1-A0SM-01A-11R-A084-07 LumA 
## [90m 9[39m   4.88 -[31m12[39m[31m.[39m[31m1[39m  TCGA-A1-A0SN-01A-11R-A144-07 LumB 
## [90m10[39m  13.6   17.8  TCGA-A1-A0SQ-01A-21R-A144-07 LumA 
## [90m# ℹ 241 more rows[39m
counts_SE.norm.tSNE |>
    pivot_sample() |>
    ggplot(aes(x = `tSNE1`, y = `tSNE2`, color=Call)) + geom_point() + my_theme

Rotate dimensions

We may want to rotate the reduced dimensions (or any two numeric columns really) of our data, of a set angle. rotate_dimensions takes a tibble, column names (as symbols; for sample, transcript and count) and an angle as arguments and returns a tibble with additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as <NAME OF DIMENSION> rotated <ANGLE> by default, or as specified in the input arguments.

TidyTranscriptomics

counts_SE.norm.MDS.rotated =
  counts_SE.norm.MDS |>
    rotate_dimensions(`Dim1`, `Dim2`, rotation_degrees = 45, action="get")

Standard procedure (comparative purpose)

rotation = function(m, d) {
    r = d * pi / 180
    ((bind_rows(
        c(`1` = cos(r), `2` = -sin(r)),
        c(`1` = sin(r), `2` = cos(r))
    ) |> as_matrix()) %*% m)
}
mds_r = pca |> rotation(rotation_degrees)
mds_r$cell_type = counts[
    match(counts$sample, rownames(mds_r)),
    "Cell.type"
]

Original On the x and y axes axis we have the first two reduced dimensions, data is coloured by cell type.

counts_SE.norm.MDS.rotated |>
    ggplot(aes(x=`Dim1`, y=`Dim2`, color=`Cell.type` )) +
  geom_point() +
  my_theme

Rotated On the x and y axes axis we have the first two reduced dimensions rotated of 45 degrees, data is coloured by cell type.

counts_SE.norm.MDS.rotated |>
    pivot_sample() |>
    ggplot(aes(x=`Dim1_rotated_45`, y=`Dim2_rotated_45`, color=`Cell.type` )) +
  geom_point() +
  my_theme

Test differential abundance

We may want to test for differential transcription between sample-wise factors of interest (e.g., with edgeR). test_differential_abundance takes a tibble, column names (as symbols; for sample, transcript and count) and a formula representing the desired linear model as arguments and returns a tibble with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

TidyTranscriptomics

counts_SE.de =
    counts_SE |>
    test_differential_abundance( ~ condition, action="get")
counts_SE.de

Standard procedure (comparative purpose)

library(edgeR)

dgList <- DGEList(counts=counts_m,group=group)
keep <- filterByExpr(dgList)
dgList <- dgList[keep,,keep.lib.sizes=FALSE]
dgList <- calcNormFactors(dgList)
design <- model.matrix(~group)
dgList <- estimateDisp(dgList,design)
fit <- glmQLFit(dgList,design)
qlf <- glmQLFTest(fit,coef=2)
topTags(qlf, n=Inf)

The functon test_differential_abundance operated with contrasts too. The constrasts hve the name of the design matrix (generally )

counts_SE.de =
    counts_SE |>
    identify_abundant(factor_of_interest = condition) |>
    test_differential_abundance(
        ~ 0 + condition,                  
        .contrasts = c( "conditionTRUE - conditionFALSE"),
        action="get"
    )

Adjust counts

We may want to adjust counts for (known) unwanted variation. adjust_abundance takes as arguments a tibble, column names (as symbols; for sample, transcript and count) and a formula representing the desired linear model where the first covariate is the factor of interest and the second covariate is the unwanted variation, and returns a tibble with additional columns for the adjusted counts as <COUNT COLUMN>_adjusted. At the moment just an unwanted covariated is allowed at a time.

TidyTranscriptomics

counts_SE.norm.adj =
    counts_SE.norm |> adjust_abundance( .factor_unwanted = batch, .factor_of_interest = factor_of_interest)

Standard procedure (comparative purpose)

library(sva)

count_m_log = log(count_m + 1)

design =
        model.matrix(
            object = ~ factor_of_interest + batch,
            data = annotation
        )

count_m_log.sva =
    ComBat(
            batch = design[,2],
            mod = design,
            ...
        )

count_m_log.sva = ceiling(exp(count_m_log.sva) -1)
count_m_log.sva$cell_type = counts[
    match(counts$sample, rownames(count_m_log.sva)),
    "Cell.type"
]

Deconvolve Cell type composition

We may want to infer the cell type composition of our samples (with the algorithm Cibersort; Newman et al., 10.1038/nmeth.3337). deconvolve_cellularity takes as arguments a tibble, column names (as symbols; for sample, transcript and count) and returns a tibble with additional columns for the adjusted cell type proportions.

TidyTranscriptomics

counts_SE.cibersort =
    counts_SE |>
    deconvolve_cellularity(action="get", cores=1, prefix = "cibersort__") 

Standard procedure (comparative purpose)

source(‘CIBERSORT.R’)
count_m |> write.table("mixture_file.txt")
results <- CIBERSORT(
    "sig_matrix_file.txt",
    "mixture_file.txt",
    perm=100, QN=TRUE
)
results$cell_type = tibble_counts[
    match(tibble_counts$sample, rownames(results)),
    "Cell.type"
]

With the new annotated data frame, we can plot the distributions of cell types across samples, and compare them with the nominal cell type labels to check for the purity of isolation. On the x axis we have the cell types inferred by Cibersort, on the y axis we have the inferred proportions. The data is facetted and coloured by nominal cell types (annotation given by the researcher after FACS sorting).

counts_SE.cibersort |>
    pivot_longer(
        names_to= "Cell_type_inferred", 
        values_to = "proportion", 
        names_prefix ="cibersort__", 
        cols=contains("cibersort__")
    ) |>
  ggplot(aes(x=`Cell_type_inferred`, y=proportion, fill=`Cell.type`)) +
  geom_boxplot() +
  facet_wrap(~`Cell.type`) +
  my_theme +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5), aspect.ratio=1/5)
## tidySummarizedExperiment says: A data frame is returned for independent data analysis.

Test differential cell-type abundance

We can also perform a statistical test on the differential cell-type abundance across conditions

    counts_SE |>
    test_differential_cellularity(. ~ condition )
## [90m# A tibble: 22 × 7[39m
##    .cell_type                       cell_type_proportions `estimate_(Intercept)`
##    [3m[90m<chr>[39m[23m                            [3m[90m<list>[39m[23m                                 [3m[90m<dbl>[39m[23m
## [90m 1[39m cibersort.B.cells.naive          [90m<tibble [48 × 8]>[39m                      -[31m2[39m[31m.[39m[31m94[39m
## [90m 2[39m cibersort.B.cells.memory         [90m<tibble [48 × 8]>[39m                      -[31m4[39m[31m.[39m[31m86[39m
## [90m 3[39m cibersort.Plasma.cells           [90m<tibble [48 × 8]>[39m                      -[31m5[39m[31m.[39m[31m33[39m
## [90m 4[39m cibersort.T.cells.CD8            [90m<tibble [48 × 8]>[39m                      -[31m2[39m[31m.[39m[31m33[39m
## [90m 5[39m cibersort.T.cells.CD4.naive      [90m<tibble [48 × 8]>[39m                      -[31m2[39m[31m.[39m[31m83[39m
## [90m 6[39m cibersort.T.cells.CD4.memory.re… [90m<tibble [48 × 8]>[39m                      -[31m2[39m[31m.[39m[31m46[39m
## [90m 7[39m cibersort.T.cells.CD4.memory.ac… [90m<tibble [48 × 8]>[39m                      -[31m3[39m[31m.[39m[31m67[39m
## [90m 8[39m cibersort.T.cells.follicular.he… [90m<tibble [48 × 8]>[39m                      -[31m5[39m[31m.[39m[31m68[39m
## [90m 9[39m cibersort.T.cells.regulatory..T… [90m<tibble [48 × 8]>[39m                      -[31m5[39m[31m.[39m[31m0[39m[31m4[39m
## [90m10[39m cibersort.T.cells.gamma.delta    [90m<tibble [48 × 8]>[39m                      -[31m4[39m[31m.[39m[31m78[39m
## [90m# ℹ 12 more rows[39m
## [90m# ℹ 4 more variables: estimate_conditionTRUE <dbl>,[39m
## [90m#   std.error_conditionTRUE <dbl>, statistic_conditionTRUE <dbl>,[39m
## [90m#   p.value_conditionTRUE <dbl>[39m

We can also perform regression analysis with censored data (coxph).

    # Add survival data

counts_SE_survival = 
    counts_SE |>
    nest(data = -sample) |>
        mutate(
            days = sample(1:1000, size = n()),
            dead = sample(c(0,1), size = n(), replace = TRUE)
        ) |>
    unnest(data) 
## Warning in is_sample_feature_deprecated_used(.data, .cols):
## tidySummarizedExperiment says: from version 1.3.1, the special columns
## including sample/feature id (colnames(se), rownames(se)) has changed to
## ".sample" and ".feature". This dataset is returned with the old-style
## vocabulary (feature and sample), however we suggest to update your workflow to
## reflect the new vocabulary (.feature, .sample)
## Warning in is_sample_feature_deprecated_used(.data, .cols):
## tidySummarizedExperiment says: from version 1.3.1, the special columns
## including sample/feature id (colnames(se), rownames(se)) has changed to
## ".sample" and ".feature". This dataset is returned with the old-style
## vocabulary (feature and sample), however we suggest to update your workflow to
## reflect the new vocabulary (.feature, .sample)

## Warning: [1m[22mThere were 96 warnings in `mutate()`.
## The first warning was:
## [1m[22m[36mℹ[39m In argument: `data = map2(...)`.
## Caused by warning in `is_sample_feature_deprecated_used()`:
## [33m![39m tidySummarizedExperiment says: from version 1.3.1, the special columns including sample/feature id (colnames(se), rownames(se)) has changed to ".sample" and ".feature". This dataset is returned with the old-style vocabulary (feature and sample), however we suggest to update your workflow to reflect the new vocabulary (.feature, .sample)
## [1m[22m[36mℹ[39m Run `dplyr::last_dplyr_warnings()` to see the 95 remaining warnings.
# Test
counts_SE_survival |>
    test_differential_cellularity(survival::Surv(days, dead) ~ .)
## [90m# A tibble: 22 × 6[39m
##    .cell_type         cell_type_proportions estimate std.error statistic p.value
##    [3m[90m<chr>[39m[23m              [3m[90m<list>[39m[23m                   [3m[90m<dbl>[39m[23m     [3m[90m<dbl>[39m[23m     [3m[90m<dbl>[39m[23m   [3m[90m<dbl>[39m[23m
## [90m 1[39m cibersort.B.cells… [90m<tibble [48 × 9]>[39m       -[31m1[39m[31m.[39m[31m46[39m      0.614    -[31m2[39m[31m.[39m[31m37[39m  0.017[4m6[24m 
## [90m 2[39m cibersort.B.cells… [90m<tibble [48 × 9]>[39m       -[31m1[39m[31m.[39m[31m15[39m      0.483    -[31m2[39m[31m.[39m[31m38[39m  0.017[4m2[24m 
## [90m 3[39m cibersort.Plasma.… [90m<tibble [48 × 9]>[39m       -[31m0[39m[31m.[39m[31m811[39m     0.472    -[31m1[39m[31m.[39m[31m72[39m  0.085[4m8[24m 
## [90m 4[39m cibersort.T.cells… [90m<tibble [48 × 9]>[39m       -[31m2[39m[31m.[39m[31m62[39m      1.28     -[31m2[39m[31m.[39m[31m0[39m[31m5[39m  0.040[4m5[24m 
## [90m 5[39m cibersort.T.cells… [90m<tibble [48 × 9]>[39m        0.287     0.374     0.769 0.442  
## [90m 6[39m cibersort.T.cells… [90m<tibble [48 × 9]>[39m       -[31m0[39m[31m.[39m[31m744[39m     0.549    -[31m1[39m[31m.[39m[31m36[39m  0.175  
## [90m 7[39m cibersort.T.cells… [90m<tibble [48 × 9]>[39m       -[31m0[39m[31m.[39m[31m777[39m     0.829    -[31m0[39m[31m.[39m[31m937[39m 0.349  
## [90m 8[39m cibersort.T.cells… [90m<tibble [48 × 9]>[39m       -[31m2[39m[31m.[39m[31m0[39m[31m3[39m      0.779    -[31m2[39m[31m.[39m[31m61[39m  0.009[4m0[24m[4m9[24m
## [90m 9[39m cibersort.T.cells… [90m<tibble [48 × 9]>[39m       -[31m0[39m[31m.[39m[31m794[39m     0.644    -[31m1[39m[31m.[39m[31m23[39m  0.217  
## [90m10[39m cibersort.T.cells… [90m<tibble [48 × 9]>[39m       -[31m1[39m[31m.[39m[31m95[39m      1.01     -[31m1[39m[31m.[39m[31m92[39m  0.054[4m7[24m 
## [90m# ℹ 12 more rows[39m

We can also perform test of Kaplan-Meier curves.

counts_stratified = 
    counts_SE_survival |>

    # Test
    test_stratification_cellularity(
        survival::Surv(days, dead) ~ .,
        sample, transcript, count
    )

counts_stratified
## [90m# A tibble: 22 × 6[39m
##    .cell_type                       cell_type_proportions .low_cellularity_exp…¹
##    [3m[90m<chr>[39m[23m                            [3m[90m<list>[39m[23m                                 [3m[90m<dbl>[39m[23m
## [90m 1[39m cibersort.B.cells.naive          [90m<tibble [48 × 9]>[39m                       8.42
## [90m 2[39m cibersort.B.cells.memory         [90m<tibble [48 × 9]>[39m                      11.6 
## [90m 3[39m cibersort.Plasma.cells           [90m<tibble [48 × 9]>[39m                      12.8 
## [90m 4[39m cibersort.T.cells.CD8            [90m<tibble [48 × 9]>[39m                       8.05
## [90m 5[39m cibersort.T.cells.CD4.naive      [90m<tibble [48 × 9]>[39m                      11.6 
## [90m 6[39m cibersort.T.cells.CD4.memory.re… [90m<tibble [48 × 9]>[39m                       6.13
## [90m 7[39m cibersort.T.cells.CD4.memory.ac… [90m<tibble [48 × 9]>[39m                       8.31
## [90m 8[39m cibersort.T.cells.follicular.he… [90m<tibble [48 × 9]>[39m                      14.8 
## [90m 9[39m cibersort.T.cells.regulatory..T… [90m<tibble [48 × 9]>[39m                       9.36
## [90m10[39m cibersort.T.cells.gamma.delta    [90m<tibble [48 × 9]>[39m                      15.7 
## [90m# ℹ 12 more rows[39m
## [90m# ℹ abbreviated name: ¹​.low_cellularity_expected[39m
## [90m# ℹ 3 more variables: .high_cellularity_expected <dbl>, pvalue <dbl>,[39m
## [90m#   plot <list>[39m

Plot Kaplan-Meier curves

counts_stratified$plot[[1]]

Cluster samples

We may want to cluster our data (e.g., using k-means sample-wise). cluster_elements takes as arguments a tibble, column names (as symbols; for sample, transcript and count) and returns a tibble with additional columns for the cluster annotation. At the moment only k-means clustering is supported, the plan is to introduce more clustering methods.

k-means

TidyTranscriptomics

counts_SE.norm.cluster = counts_SE.norm.MDS |>
  cluster_elements(method="kmeans", centers = 2, action="get" )

Standard procedure (comparative purpose)

count_m_log = log(count_m + 1)

k = kmeans(count_m_log, iter.max = 1000, ...)
cluster = k$cluster

cluster$cell_type = tibble_counts[
    match(tibble_counts$sample, rownames(cluster)),
    c("Cell.type", "Dim1", "Dim2")
]

We can add cluster annotation to the MDS dimension reduced data set and plot.

 counts_SE.norm.cluster |>
    ggplot(aes(x=`Dim1`, y=`Dim2`, color=`cluster_kmeans`)) +
  geom_point() +
  my_theme

SNN

Matrix package (v1.3-3) causes an error with Seurat::FindNeighbors used in this method. We are trying to solve this issue. At the moment this option in unaviable.

TidyTranscriptomics

counts_SE.norm.SNN =
    counts_SE.norm.tSNE |>
    cluster_elements(method = "SNN")

Standard procedure (comparative purpose)

library(Seurat)

snn = CreateSeuratObject(count_m)
snn = ScaleData(
    snn, display.progress = TRUE,
    num.cores=4, do.par = TRUE
)
snn = FindVariableFeatures(snn, selection.method = "vst")
snn = FindVariableFeatures(snn, selection.method = "vst")
snn = RunPCA(snn, npcs = 30)
snn = FindNeighbors(snn)
snn = FindClusters(snn, method = "igraph", ...)
snn = snn[["seurat_clusters"]]

snn$cell_type = tibble_counts[
    match(tibble_counts$sample, rownames(snn)),
    c("Cell.type", "Dim1", "Dim2")
]
counts_SE.norm.SNN |>
    pivot_sample() |>
    select(contains("tSNE"), everything()) 

counts_SE.norm.SNN |>
    pivot_sample() |>
    gather(source, Call, c("cluster_SNN", "Call")) |>
    distinct() |>
    ggplot(aes(x = `tSNE1`, y = `tSNE2`, color=Call)) + geom_point() + facet_grid(~source) + my_theme


# Do differential transcription between clusters
counts_SE.norm.SNN |>
    mutate(factor_of_interest = `cluster_SNN` == 3) |>
    test_differential_abundance(
    ~ factor_of_interest,
    action="get"
   )

Drop redundant transcripts

We may want to remove redundant elements from the original data set (e.g., samples or transcripts), for example if we want to define cell-type specific signatures with low sample redundancy. remove_redundancy takes as arguments a tibble, column names (as symbols; for sample, transcript and count) and returns a tibble with redundant elements removed (e.g., samples). Two redundancy estimation approaches are supported:

  • removal of highly correlated clusters of elements (keeping a representative) with method=“correlation”
  • removal of most proximal element pairs in a reduced dimensional space.

Approach 1

TidyTranscriptomics

counts_SE.norm.non_redundant =
    counts_SE.norm.MDS |>
  remove_redundancy(    method = "correlation" )
## Getting the 8513 most variable genes

Standard procedure (comparative purpose)

library(widyr)

.data.correlated =
    pairwise_cor(
        counts,
        sample,
        transcript,
        rc,
        sort = TRUE,
        diag = FALSE,
        upper = FALSE
    ) |>
    filter(correlation > correlation_threshold) |>
    distinct(item1) |>
    rename(!!.element := item1)

# Return non redudant data frame
counts |> anti_join(.data.correlated) |>
    spread(sample, rc, - transcript) |>
    left_join(annotation)

We can visualise how the reduced redundancy with the reduced dimentions look like

counts_SE.norm.non_redundant |>
    pivot_sample() |>
    ggplot(aes(x=`Dim1`, y=`Dim2`, color=`Cell.type`)) +
  geom_point() +
  my_theme

Approach 2

counts_SE.norm.non_redundant =
    counts_SE.norm.MDS |>
  remove_redundancy(
    method = "reduced_dimensions",
    Dim_a_column = `Dim1`,
    Dim_b_column = `Dim2`
  )

We can visualise MDS reduced dimensions of the samples with the closest pair removed.

counts_SE.norm.non_redundant |>
    pivot_sample() |>
    ggplot(aes(x=`Dim1`, y=`Dim2`, color=`Cell.type`)) +
  geom_point() +
  my_theme

Other useful wrappers

The above wrapper streamline the most common processing of bulk RNA sequencing data. Other useful wrappers are listed above.

From BAM/SAM to tibble of gene counts

We can calculate gene counts (using FeatureCounts; Liao Y et al., 10.1093/nar/gkz114) from a list of BAM/SAM files and format them into a tidy structure (similar to counts).

counts = tidybulk_SAM_BAM(
    file_names,
    genome = "hg38",
    isPairedEnd = TRUE,
    requireBothEndsMapped = TRUE,
    checkFragLength = FALSE,
    useMetaFeatures = TRUE
)

From ensembl IDs to gene symbol IDs

We can add gene symbols from ensembl identifiers. This is useful since different resources use ensembl IDs while others use gene symbol IDs. This currently works for human and mouse.

counts_ensembl |> ensembl_to_symbol(ens)
## [90m# A tibble: 119 × 8[39m
##    ens   iso   `read count` sample cases_0_project_dise…¹ cases_0_samples_0_sa…²
##    [3m[90m<chr>[39m[23m [3m[90m<chr>[39m[23m        [3m[90m<dbl>[39m[23m [3m[90m<chr>[39m[23m  [3m[90m<chr>[39m[23m                  [3m[90m<chr>[39m[23m                 
## [90m 1[39m ENSG… 13             144 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 2[39m ENSG… 13              72 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 3[39m ENSG… 13               0 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 4[39m ENSG… 13            [4m1[24m099 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 5[39m ENSG… 13              11 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 6[39m ENSG… 13               2 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 7[39m ENSG… 13               3 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 8[39m ENSG… 13            [4m2[24m678 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m 9[39m ENSG… 13             751 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m10[39m ENSG… 13               1 TARGE… Acute Myeloid Leukemia Primary Blood Derived…
## [90m# ℹ 109 more rows[39m
## [90m# ℹ abbreviated names: ¹​cases_0_project_disease_type,[39m
## [90m#   ²​cases_0_samples_0_sample_type[39m
## [90m# ℹ 2 more variables: transcript <chr>, ref_genome <chr>[39m

From gene symbol to gene description (gene name in full)

We can add gene full name (and in future description) from symbol identifiers. This currently works for human and mouse.

counts_SE |> 
    describe_transcript() |> 
    select(feature, description, everything())
## 

## 

## Warning in is_sample_feature_deprecated_used(.data, .cols):
## tidySummarizedExperiment says: from version 1.3.1, the special columns
## including sample/feature id (colnames(se), rownames(se)) has changed to
## ".sample" and ".feature". This dataset is returned with the old-style
## vocabulary (feature and sample), however we suggest to update your workflow to
## reflect the new vocabulary (.feature, .sample)

## [90m# A SummarizedExperiment-tibble abstraction: 408,624 × 10[39m
## [90m# [90mFeatures=8513 | Samples=48 | Assays=count[0m[39m
##    feature  sample     count Cell.type time  condition batch factor_of_interest
##    [3m[90m<chr>[39m[23m    [3m[90m<chr>[39m[23m      [3m[90m<dbl>[39m[23m [3m[90m<fct>[39m[23m     [3m[90m<fct>[39m[23m [3m[90m<lgl>[39m[23m     [3m[90m<fct>[39m[23m [3m[90m<lgl>[39m[23m             
## [90m 1[39m A1BG     SRR1740034   153 b_cell    0 d   TRUE      0     TRUE              
## [90m 2[39m A1BG-AS1 SRR1740034    83 b_cell    0 d   TRUE      0     TRUE              
## [90m 3[39m AAAS     SRR1740034   868 b_cell    0 d   TRUE      0     TRUE              
## [90m 4[39m AACS     SRR1740034   222 b_cell    0 d   TRUE      0     TRUE              
## [90m 5[39m AAGAB    SRR1740034   590 b_cell    0 d   TRUE      0     TRUE              
## [90m 6[39m AAMDC    SRR1740034    48 b_cell    0 d   TRUE      0     TRUE              
## [90m 7[39m AAMP     SRR1740034  [4m1[24m257 b_cell    0 d   TRUE      0     TRUE              
## [90m 8[39m AANAT    SRR1740034   284 b_cell    0 d   TRUE      0     TRUE              
## [90m 9[39m AAR2     SRR1740034   379 b_cell    0 d   TRUE      0     TRUE              
## [90m10[39m AARS2    SRR1740034   685 b_cell    0 d   TRUE      0     TRUE              
## [90m# ℹ 40 more rows[39m
## [90m# ℹ 2 more variables: description <chr>, gene_name <chr>[39m