pivot_sample() takes as input a `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a `tbl` with only sample-related columns

pivot_sample(.data)

# S4 method for class 'SummarizedExperiment'
pivot_sample(.data)

# S4 method for class 'RangedSummarizedExperiment'
pivot_sample(.data)

Arguments

.data

A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))

Value

A `tbl` with transcript-related information

A consistent object (to the input)

A consistent object (to the input)

Details

`r lifecycle::badge("maturing")`

This functon extracts only sample-related information for downstream analysis (e.g., visualisation). It is disruptive in the sense that it cannot be passed anymore to tidybulk function.

Examples

## Load airway dataset for examples

  data('airway', package = 'airway')
  # Ensure a 'condition' column exists for examples expecting it

    SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex


library(airway)
data(airway)
airway <- airway[1:100, 1:5]

  pivot_sample(airway )
#> # A tibble: 5 × 11
#>   .sample    SampleName cell    dex   albut Run      avgLength Experiment Sample
#>   <chr>      <fct>      <fct>   <fct> <fct> <fct>        <int> <fct>      <fct> 
#> 1 SRR1039508 GSM1275862 N61311  untrt untrt SRR1039…       126 SRX384345  SRS50…
#> 2 SRR1039509 GSM1275863 N61311  trt   untrt SRR1039…       126 SRX384346  SRS50…
#> 3 SRR1039512 GSM1275866 N052611 untrt untrt SRR1039…       126 SRX384349  SRS50…
#> 4 SRR1039513 GSM1275867 N052611 trt   untrt SRR1039…        87 SRX384350  SRS50…
#> 5 SRR1039516 GSM1275870 N080611 untrt untrt SRR1039…       120 SRX384353  SRS50…
#> # ℹ 2 more variables: BioSample <fct>, condition <fct>