All functions

X_cibersort

Cibersort reference

adjust_abundance()

Adjust transcript abundance for unwanted variation

aggregate_duplicates()

Aggregates multiple counts from the same samples (e.g., from isoforms), concatenates other character columns, and averages other numeric columns

arrange

Arrange rows by column values

as_SummarizedExperiment()

as_SummarizedExperiment

as_matrix()

Get matrix from tibble

bind_rows

Efficiently bind multiple data frames by row and column

breast_tcga_mini_SE

Needed for vignette breast_tcga_mini_SE

cluster_elements()

Get clusters of elements (e.g., samples or transcripts)

counts_ensembl

Counts with ensembl annotation

deconvolve_cellularity()

Get cell type proportions from samples

describe_transcript() .describe_transcript_SE()

Get DESCRIPTION from gene SYMBOL for Human and Mouse

distinct

distinct

bind_cols left_join

Left join datasets

ensembl_symbol_mapping

Data set

ensembl_to_symbol()

Add transcript symbol column from ensembl id for human and mouse data

fill_missing_abundance()

Fill transcript abundance if missing from sample-transcript pairs

filter

Subset rows using column values

flybaseIDs

flybaseIDs

get_bibliography()

Produces the bibliography list of your workflow

group_by

Group by one or more variables

identify_abundant()

find abundant transcripts

impute_missing_abundance()

impute transcript abundance if missing from sample-transcript pairs

inner_join right_join full_join

Inner join datasets

keep_abundant()

Keep abundant transcripts

keep_variable()

Keep variable transcripts

log10_reverse_trans()

log10_reverse_trans

logit_trans()

logit scale

mutate

Create, modify, and delete columns

unnest nest

unnest

pivot_sample()

Extract sample-wise information

pivot_transcript()

Extract transcript-wise information

quantile_normalise_abundance()

Normalise by quantiles the counts of transcripts/genes

reduce_dimensions()

Dimension reduction of the transcript abundance data

remove_redundancy()

Drop redundant elements (e.g., samples) for which feature (e.g., transcript/gene) abundances are correlated

rename

Rename columns

resolve_complete_confounders_of_non_interest()

Resolve Complete Confounders of Non-Interest

rotate_dimensions()

Rotate two dimensions (e.g., principal components) of an arbitrary angle

rowwise

Group input by rows

scale_abundance()

Scale the counts of transcripts/genes

se

SummarizedExperiment

se_mini

SummarizedExperiment mini for vignette

summarise

Summarise each group to fewer rows

symbol_to_entrez()

Get ENTREZ id from gene SYMBOL

test_differential_abundance()

Perform differential transcription testing using edgeR quasi-likelihood (QLT), edgeR likelihood-ratio (LR), limma-voom, limma-voom-with-quality-weights or DESeq2

test_differential_cellularity()

Add differential tissue composition information to a tbl

test_gene_enrichment()

analyse gene enrichment with EGSEA

test_gene_overrepresentation()

analyse gene over-representation with GSEA

test_gene_rank()

analyse gene rank with GSEA

test_stratification_cellularity()

Test of stratification of biological replicates based on tissue composition, one cell-type at the time, using Kaplan-meier curves.

tidybulk()

Creates an annotated `tidybulk` tibble from a `tbl` or `SummarizedExperiment` object

tidybulk_SAM_BAM()

Creates a `tt` object from a list of file names of BAM/SAM

tximeta_summarizeToGene_object

Needed for tests tximeta_summarizeToGene_object, It is SummarizedExperiment from tximeta

vignette_manuscript_signature_boxplot

Needed for vignette vignette_manuscript_signature_boxplot

vignette_manuscript_signature_tsne

Needed for vignette vignette_manuscript_signature_tsne

vignette_manuscript_signature_tsne2

Needed for vignette vignette_manuscript_signature_tsne2