R/quantile_normalise_abundance.R
quantile_normalise_abundance-methods.Rd
quantile_normalise_abundance() takes as input A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and Scales transcript abundance compansating for sequencing depth (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25).
quantile_normalise_abundance(
.data,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL
)
# S4 method for class 'SummarizedExperiment'
quantile_normalise_abundance(
.data,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL
)
# S4 method for class 'RangedSummarizedExperiment'
quantile_normalise_abundance(
.data,
.abundance = NULL,
method = "limma_normalize_quantiles",
target_distribution = NULL
)
A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
The name of the transcript/gene abundance column
A character string. Either "limma_normalize_quantiles" for limma::normalizeQuantiles or "preprocesscore_normalize_quantiles_use_target" for preprocessCore::normalize.quantiles.use.target for large-scale datasets.
A numeric vector. If NULL the target distribution will be calculated by preprocessCore. This argument only affects the "preprocesscore_normalize_quantiles_use_target" method.
A tbl object with additional columns with scaled data as `<NAME OF COUNT COLUMN>_scaled`
A `SummarizedExperiment` object
A `SummarizedExperiment` object
`r lifecycle::badge("maturing")`
Tranform the feature abundance across samples so to have the same quantile distribution (using preprocessCore).
Underlying method
If `limma_normalize_quantiles` is chosen
.data |>limma::normalizeQuantiles()
If `preprocesscore_normalize_quantiles_use_target` is chosen
.data |> preprocessCore::normalize.quantiles.use.target( target = preprocessCore::normalize.quantiles.determine.target(.data) )
Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-020-02233-7
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. doi:10.1093/nar/gkv007
## Load airway dataset for examples
data('airway', package = 'airway')
# Ensure a 'condition' column exists for examples expecting it
SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex
airway |>
quantile_normalise_abundance()
#> # A SummarizedExperiment-tibble abstraction: 509,416 × 25
#> # Features=63677 | Samples=8 | Assays=counts, counts_scaled
#> .feature .sample counts counts_scaled SampleName cell dex albut Run
#> <chr> <chr> <int> <dbl> <fct> <fct> <fct> <fct> <fct>
#> 1 ENSG00000000… SRR103… 679 691. GSM1275862 N613… untrt untrt SRR1…
#> 2 ENSG00000000… SRR103… 0 0 GSM1275862 N613… untrt untrt SRR1…
#> 3 ENSG00000000… SRR103… 467 469. GSM1275862 N613… untrt untrt SRR1…
#> 4 ENSG00000000… SRR103… 260 258. GSM1275862 N613… untrt untrt SRR1…
#> 5 ENSG00000000… SRR103… 60 58.6 GSM1275862 N613… untrt untrt SRR1…
#> 6 ENSG00000000… SRR103… 0 0 GSM1275862 N613… untrt untrt SRR1…
#> 7 ENSG00000000… SRR103… 3251 3439. GSM1275862 N613… untrt untrt SRR1…
#> 8 ENSG00000001… SRR103… 1433 1474. GSM1275862 N613… untrt untrt SRR1…
#> 9 ENSG00000001… SRR103… 519 527. GSM1275862 N613… untrt untrt SRR1…
#> 10 ENSG00000001… SRR103… 394 395. GSM1275862 N613… untrt untrt SRR1…
#> # ℹ 40 more rows
#> # ℹ 16 more variables: avgLength <int>, Experiment <fct>, Sample <fct>,
#> # BioSample <fct>, condition <fct>, gene_id <chr>, gene_name <chr>,
#> # entrezid <int>, gene_biotype <chr>, gene_seq_start <int>,
#> # gene_seq_end <int>, seq_name <chr>, seq_strand <int>,
#> # seq_coord_system <int>, symbol <chr>, GRangesList <list>