R/test_gene_overrepresentation.R
test_gene_overrepresentation-methods.Rd
test_gene_overrepresentation() takes as input a `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a `tbl` with the GSEA statistics
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
# S4 method for class 'SummarizedExperiment'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
# S4 method for class 'RangedSummarizedExperiment'
test_gene_overrepresentation(
.data,
.entrez,
.do_test,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
The ENTREZ ID of the transcripts/genes
A boolean column name symbol. It indicates the transcript to check
A character. For example, human or mouse. MSigDB uses the latin species names (e.g., \"Mus musculus\", \"Homo sapiens\")
The name of the sample column
A character vector. The subset of MSigDB datasets you want to test against (e.g. \"C2\"). If NULL all gene sets are used (suggested). This argument was added to avoid time overflow of the examples.
DEPRECATED. Use gene_sets instead.
A consistent object (to the input)
A `SummarizedExperiment` object
A `RangedSummarizedExperiment` object
`r lifecycle::badge("maturing")`
This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA. This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.
# Get MSigDB data msigdb_data = msigdbr::msigdbr(species = species)
# Filter for specific gene collections if provided
msigdb_data = filter(msigdb_data, gs_collection
# Process the data msigdb_data |> nest(data = -gs_collection) |> mutate(test = map( data, ~ clusterProfiler::enricher( my_entrez_rank, TERM2GENE=.x |> select(gs_name, ncbi_gene), pvalueCutoff = 1 ) |> as_tibble() ))
Mangiola, S., Molania, R., Dong, R., Doyle, M. A., & Papenfuss, A. T. (2021). tidybulk: an R tidy framework for modular transcriptomic data analysis. Genome Biology, 22(1), 42. doi:10.1186/s13059-020-02233-7
Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284-287. doi:10.1089/omi.2011.0118
## Load airway dataset for examples
data('airway', package = 'airway')
# Ensure a 'condition' column exists for examples expecting it
SummarizedExperiment::colData(airway)$condition <- SummarizedExperiment::colData(airway)$dex
print("Not run for build time.")
#> [1] "Not run for build time."
# airway = airway[!rowData(airway)$entrez |> is.na(),] |> aggregate_duplicates(.transcript = entrez)
# df_entrez = mutate(df_entrez, do_test = feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))
if (FALSE) { # \dontrun{
test_gene_overrepresentation(
df_entrez,
.sample = sample,
.entrez = entrez,
.do_test = do_test,
species="Homo sapiens",
gene_sets =c("C2")
)
} # }