test_gene_rank() takes as input a `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a `tbl` with the GSEA statistics
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
# S4 method for class 'spec_tbl_df'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
gene_set = NULL
)
# S4 method for class 'tbl_df'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
gene_set = NULL
)
# S4 method for class 'tidybulk'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
gene_set = NULL
)
# S4 method for class 'SummarizedExperiment'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
# S4 method for class 'RangedSummarizedExperiment'
test_gene_rank(
.data,
.entrez,
.arrange_desc,
species,
.sample = NULL,
gene_sets = NULL,
gene_set = NULL
)
A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
The ENTREZ ID of the transcripts/genes
A column name of the column to arrange in decreasing order
A character. For example, human or mouse. MSigDB uses the latin species names (e.g., \"Mus musculus\", \"Homo sapiens\")
The name of the sample column
A character vector or a list. It can take one or more of the following built-in collections as a character vector: c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease", "kegg_metabolism", "kegg_signaling"), to be used with EGSEA buildIdx. c1 is human specific. Alternatively, a list of user-supplied gene sets can be provided, to be used with EGSEA buildCustomIdx. In that case, each gene set is a character vector of Entrez IDs and the names of the list are the gene set names.
DEPRECATED. Use gene_sets instead.
A consistent object (to the input)
A `spec_tbl_df` object
A `tbl_df` object
A `tidybulk` object
A `SummarizedExperiment` object
A `RangedSummarizedExperiment` object
maturing
This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA. This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.
Undelying method: # Get gene sets signatures msigdbr::msigdbr(species = species)
# Filter specific gene_sets if specified. This was introduced to speed up examples executionS when( !is.null(gene_sets ) ~ filter(., gs_cat ~ (.) ) |>
# Execute calculation nest(data = -gs_cat) |> mutate(fit = map( data, ~ clusterProfiler::GSEA( my_entrez_rank, TERM2GENE=.x |> select(gs_name, entrez_gene), pvalueCutoff = 1 )
))
print("Not run for build time.")
#> [1] "Not run for build time."
if (FALSE) { # \dontrun{
df_entrez = tidybulk::se_mini
df_entrez = mutate(df_entrez, do_test = .feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))
df_entrez = df_entrez |> test_differential_abundance(~ condition)
test_gene_rank(
df_entrez,
.sample = .sample,
.entrez = entrez,
species="Homo sapiens",
gene_sets =c("C2"),
.arrange_desc = logFC
)
} # }