R/methods.R
, R/methods_SE.R
rotate_dimensions-methods.Rd
rotate_dimensions() takes as input a `tbl` formatted as | <DIMENSION 1> | <DIMENSION 2> | <...> | and calculates the rotated dimensional space of the transcript abundance.
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL,
action = "add"
)
# S4 method for class 'spec_tbl_df'
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL,
action = "add"
)
# S4 method for class 'tbl_df'
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL,
action = "add"
)
# S4 method for class 'tidybulk'
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL,
action = "add"
)
# S4 method for class 'SummarizedExperiment'
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL,
action = "add"
)
# S4 method for class 'RangedSummarizedExperiment'
rotate_dimensions(
.data,
dimension_1_column,
dimension_2_column,
rotation_degrees,
.element = NULL,
of_samples = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL,
action = "add"
)
A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
A character string. The column of the dimension 1
A character string. The column of the dimension 2
A real number between 0 and 360
The name of the element column (normally samples).
A boolean. In case the input is a tidybulk object, it indicates Whether the element column will be sample or transcript column
A character string. The column of the rotated dimension 1 (optional)
A character string. The column of the rotated dimension 2 (optional)
A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).
A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as `<NAME OF DIMENSION> rotated <ANGLE>` by default, or as specified in the input arguments.
A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as `<NAME OF DIMENSION> rotated <ANGLE>` by default, or as specified in the input arguments.
A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as `<NAME OF DIMENSION> rotated <ANGLE>` by default, or as specified in the input arguments.
A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as `<NAME OF DIMENSION> rotated <ANGLE>` by default, or as specified in the input arguments.
A `SummarizedExperiment` object
A `SummarizedExperiment` object
`r lifecycle::badge("maturing")`
This function to rotate two dimensions such as the reduced dimensions.
Underlying custom method: rotation = function(m, d) // r = the angle // m data matrix r = d * pi / 180 ((bind_rows( c(`1` = cos(r), `2` = -sin(r)), c(`1` = sin(r), `2` = cos(r)) ) |> as_matrix())
counts.MDS =
tidybulk::se_mini |>
identify_abundant() |>
reduce_dimensions( method="MDS", .dims = 3)
#> No group or design set. Assuming all samples belong to one group.
#> Getting the 182 most variable genes
#> tidybulk says: to access the raw results do `attr(..., "internals")$MDS`
counts.MDS.rotated = rotate_dimensions(counts.MDS, `Dim1`, `Dim2`, rotation_degrees = 45, .element = sample)