unnest
nest
A tbl. (See tidyr)
<[`tidy-select`][tidyr_tidy_select]> Columns to unnest. If you `unnest()` multiple columns, parallel entries must be of compatibble sizes, i.e. they're either equal or length 1 (following the standard tidyverse recycling rules).
If `NULL`, the default, the names will be left as is. In `nest()`, inner names will come from the former outer names; in `unnest()`, the new outer names will come from the inner names.
If a string, the inner and outer names will be used together. In `nest()`, the names of the new outer columns will be formed by pasting together the outer and the inner column names, separated by `names_sep`. In `unnest()`, the new inner names will have the outer names (+ `names_sep`) automatically stripped. This makes `names_sep` roughly symmetric between nesting and unnesting.
See tidyr::unnest
See tidyr::unnest
See tidyr::unnest
See tidyr::unnest
tidyr::unnest
tidyr::unnest
See tidyr::unnest
A tbl. (See tidyr)
Name-variable pairs of the form new_col = c(col1, col2, col3) (See tidyr)
A tidySummarizedExperiment objector a tibble depending on input
A tt object
tidybulk::se_mini |> tidybulk() |> nest( data = -.feature) |> unnest(data)
#> # A tibble: 2,635 × 9
#> .feature .sample count Cell.type time condition days dead entrez
#> <chr> <chr> <dbl> <chr> <chr> <lgl> <dbl> <dbl> <chr>
#> 1 ABCB4 SRR1740034 1035 b_cell 0 d TRUE 1 1 5244
#> 2 ABCB4 SRR1740035 1123 b_cell 1 d TRUE 10 1 5244
#> 3 ABCB4 SRR1740043 5 monocyte 1 d FALSE 500 1 5244
#> 4 ABCB4 SRR1740058 10 t_cell 0 d TRUE 1000 0 5244
#> 5 ABCB4 SRR1740067 94 dendritic_myelo… 1 d FALSE 2000 1 5244
#> 6 ABCB9 SRR1740034 45 b_cell 0 d TRUE 1 1 23457
#> 7 ABCB9 SRR1740035 53 b_cell 1 d TRUE 10 1 23457
#> 8 ABCB9 SRR1740043 7 monocyte 1 d FALSE 500 1 23457
#> 9 ABCB9 SRR1740058 118 t_cell 0 d TRUE 1000 0 23457
#> 10 ABCB9 SRR1740067 10 dendritic_myelo… 1 d FALSE 2000 1 23457
#> # ℹ 2,625 more rows
tidybulk::se_mini %>% tidybulk() %>% nest( data = -.feature)
#> # A tibble: 527 × 2
#> .feature data
#> <chr> <list>
#> 1 ABCB4 <tidybulk [5 × 8]>
#> 2 ABCB9 <tidybulk [5 × 8]>
#> 3 ACAP1 <tidybulk [5 × 8]>
#> 4 ACHE <tidybulk [5 × 8]>
#> 5 ACP5 <tidybulk [5 × 8]>
#> 6 ADAM28 <tidybulk [5 × 8]>
#> 7 ADAMDEC1 <tidybulk [5 × 8]>
#> 8 ADAMTS3 <tidybulk [5 × 8]>
#> 9 ADRB2 <tidybulk [5 × 8]>
#> 10 AIF1 <tidybulk [5 × 8]>
#> # ℹ 517 more rows