R/methods.R
ensembl_to_symbol-methods.Rd
ensembl_to_symbol() takes as input a `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with the additional transcript symbol column
ensembl_to_symbol(.data, .ensembl, action = "add")
# S4 method for class 'spec_tbl_df'
ensembl_to_symbol(.data, .ensembl, action = "add")
# S4 method for class 'tbl_df'
ensembl_to_symbol(.data, .ensembl, action = "add")
# S4 method for class 'tidybulk'
ensembl_to_symbol(.data, .ensembl, action = "add")
a `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
A character string. The column that is represents ensembl gene id
A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).
A consistent object (to the input) including additional columns for transcript symbol
A consistent object (to the input) including additional columns for transcript symbol
A consistent object (to the input) including additional columns for transcript symbol
A consistent object (to the input) including additional columns for transcript symbol
questioning
This is useful since different resources use ensembl IDs while others use gene symbol IDs. At the moment this work for human (genes and transcripts) and mouse (genes) data.
# This function was designed for data.frame
# Convert from SummarizedExperiment for this example. It is NOT reccomended.
tidybulk::se_mini |> tidybulk() |> as_tibble() |> ensembl_to_symbol(.feature)
#> # A tibble: 2,635 × 11
#> .feature .sample count Cell.type time condition days dead entrez
#> <chr> <chr> <dbl> <chr> <chr> <lgl> <dbl> <dbl> <chr>
#> 1 ABCB4 SRR1740034 1035 b_cell 0 d TRUE 1 1 5244
#> 2 ABCB9 SRR1740034 45 b_cell 0 d TRUE 1 1 23457
#> 3 ACAP1 SRR1740034 7151 b_cell 0 d TRUE 1 1 9744
#> 4 ACHE SRR1740034 2 b_cell 0 d TRUE 1 1 43
#> 5 ACP5 SRR1740034 2278 b_cell 0 d TRUE 1 1 54
#> 6 ADAM28 SRR1740034 11156 b_cell 0 d TRUE 1 1 10863
#> 7 ADAMDEC1 SRR1740034 72 b_cell 0 d TRUE 1 1 27299
#> 8 ADAMTS3 SRR1740034 0 b_cell 0 d TRUE 1 1 9508
#> 9 ADRB2 SRR1740034 298 b_cell 0 d TRUE 1 1 154
#> 10 AIF1 SRR1740034 8 b_cell 0 d TRUE 1 1 199
#> # ℹ 2,625 more rows
#> # ℹ 2 more variables: transcript <chr>, ref_genome <chr>